File System Expertise @ SCS

Supercomputing Systems

- Work done since 1999:
- Re-engineered Petal/Frangipani research code
- Port of Petal/Frangipani to 2.4
 Linux Kernel
 - » single client throughput up from 35 MB/s to 102 MB/s (153 MB/s with direct I/O), thanks to our page cache & aggregation logic
- Design done for fine grain locking, deferred m_time updates, efficient MPI-I/O support, others
- Distributed test suite, a lot of fixes done

Linux 2.4 Streaming I/O 2002 @ SCS, Zurich

Testing a Distributed File System: Example

Supercomputing Systems

- MPI based distributed test suite, covering
 - » meta-data processing
 - » data consistency
 - » distributed POSIX semantics
- Stress test and correctness test
- 42 individual tests
- also interesting when placing all processes on single node:
 - » 2.4.18 ext2 passes 41 (writev's are not atomic)
 - » 2.2.18 ext2 passed 26

All processes write into a single file

MPI_Barrier()

Read data from neighbor on the left

MPI_Barrier()

Write data back to own part of file

Failure Handling Testing

Supercomputing Systems

- Test: Failure of Frangipani Storage Server
- Automated test using
 - » power off of server through remote management
 - » simulation of Ethernet link failure through switch reconfiguration

Typical test runs 24h and longer, having a failure every

Current Work on File Systems @ SCS

Supercomputing Systems

- Apply the tests to the Lustre File System
- Report the bugs, propose fixes https://bugzilla.lustre.org/
- Current (yesterday's) status:
 - » 28 out of 42 work
 - » But: 2 .. 3 fixes per week. Lustre is coming fast!
- Hope to leverage our experience of previous file system work in Lustre